
Towards Intelligent Management of Very Large
Computing Systems

Eugen Volk, Jochen Buchholz, Stefan Wesner, Daniela Koudela, Matthias Schmidt,
Niels Fallenbeck, Roland Schwarzkopf, Bernd Freisleben, Götz Isenmann, Jürgen
Schwitalla, Marc Lohrer, Erich Focht, Andreas Jeutter

Abstract The increasing complexity of current and future very large computing sys-
tems with a rapidly growing number of cores and nodes requires high human effort
on administration and maintenance of these systems. Existing monitoring tools are
neither scalable nor capable to reduce the overwhelming flow of information and
provide only essential information of high value. Current management tools lack on
scalability and capability to process a huge amount of information intelligently by
relating several data and information from various sources together for making right
decisions on error/fault handling. In order to solve these problems, we present a so-
lution designed within the TIMaCS project, a hierarchical, scalable, policy based
monitoring and management framework.

Eugen Volk, Jochen Buchholz, Stefan Wesner
High Performance Computing Center Stuttgart, Nobelstrasse 19, D-70569 Stuttgart, Germany
e-mail: {volk, buchholz, wesner}@hlrs.de ·
Daniela Koudela, Technische Universität Dresden, Zentrum für Informationsdienste und Hochleis-
tungsrechnen (ZIH), D-01062 Dresden, Germany
e-mail: daniela.koudela@tu-dresden.de ·
Matthias Schmidt, Niels Fallenbeck, Roland Schwarzkopf, Bernd Freisleben
Department of Mathematics and Computer Science, University of Marburg
Hans-Meerwein-Str. 3, D-35032 Marburg, Germany
e-mail: {schmidtm, fallenbe, rschwarzkopf, freisleb}@informatik.uni-marburg.de ·
Götz Isenmann, Jürgen Schwitalla, Marc Lohrer
science + computing ag, Hagellocher Weg 73, D-72070 Tübingen, Germany
e-mail: {isenmann, j.schwitalla, lohrer}@science-computing.de ·
Erich Focht, Andreas Jeutter
NEC High Performance Computing Europe, Hessbruehlstrasse 21b, D-70565 Stuttgart, Germany
e-mail: {efocht, ajeutter}@hpce.nec.com

1

2 Authors Suppressed Due to Excessive Length

1 Introduction

Operators of very large computing centres face the challenge of the increasing size
of their offered systems following Moores or Amdahls law already for many years.
Until recently the effort needed to operate such systems has not increased simi-
larly thanks to advances in the overall system architecture, as systems could be
kept quite homogeneous and the number of critical elements with comparably short
Mean Time Between Failure (MTBF) such as hard disks could be kept low inside
the compute node part.

Current petaflops and future exascale computing systems would require an un-
acceptable growing human effort for administration and maintenance based on an
increased number of components. But even more would the effort rise due to their
increased heterogeneity and complexity [1, 2, 3]. Computing systems cannot be
built anymore with more or less homogeneous nodes that are similar siblings of
each other in terms of hardware as well as software stack. Special purpose hardware
and accelerators such as GPGPUs and FPGAs in different versions and generations,
different memory sizes and even CPUs of different generations with different prop-
erties in terms of number of cores or memory bandwidth might be desirable in order
to support not only simulations covering the full machine with a single applica-
tion type, but also more coupled simulations exploiting the specific properties of a
hardware system for different parts of the overall application. Different hardware
versions go together with different versions and flavours of system software such as
operating systems, MPI libraries, compilers, etc. as well as different, at best indi-
vidual user specific, variants combining different modules and versions of available
software fully adapted to the requirements of a single job. Additionally the operation
model from purely batch might be complemented by usage models allowing more
interactive or time controlled access for example for simulation steering or remote
visualization jobs.

While the problem of detecting hardware failures such as a broken disk or mem-
ory has not changed and still can be done similarly as in the past by specific valida-
tion scripts and programs between two simulation jobs the problems that occur in
relation with different software versions or only in specific use scenarios are much
more complex to be detected and are clearly beyond what a human operator can ad-
dress with a reasonable amount of time. Consequently the obvious answer is that the
detection of problems based on different type of informations collected at different
time steps needs to be automated and moved from the pure data level to the infor-
mation layer where an analysis of the information either leads to recommendations
to a human operator or at best triggers a process applying certain counter measures
automatically.

A wide range of monitoring tools such as Ganglia [4] or ZenossCore [5] ex-
ist that are neither scalable to the system sizes of thousands of nodes and hundred
thousands of compute cores, cannot cope with different or changing system configu-
rations (e. g. this service is only available if the compute node is booted in certain OS
modes), and the fusion of different informations to a consolidated system analysis
state is missing, but more important they lack a powerful mechanism to analyse the

Towards Intelligent Management of Very Large Computing Systems 3

informations monitored and to trigger reactions to change the system state actively
to bring the system state back to normal operations.

Another major limitation is the lack of integration of historical data in the in-
formation processing, the lack of integration with other data sources (e. g. planned
system maintenance schedule database) and the very limited amount of counter mea-
sures that can be applied. In order to solve these problems, we propose in scope of
the TIMaCS [6] project a scalable, hierarchical policy based monitoring and man-
agement framework. The TIMaCS approach is based on an open architecture allow-
ing the integration of any kind of monitoring solution and is designed to be extensi-
ble for information consumers and processing components. The design of TIMaCS
follows concepts coming from the research domain of organic computing (e. g. see
references [7] and [8]) also propagated by different computing vendors such as IBM
in their autonomic computing [9] initiative.

In this paper we present the TIMaCS solution in form of a hierarchically struc-
tured monitoring and management framework, capable to solve the challenges and
problems mentioned above.

2 Related Work

There are lots of tools available supporting the monitoring and management of large
systems but they all originate from one of the two domains. Either the tools [10] (like
Nagios [11], Ganglia [4], Zenoss [5]) are designed to monitor systems with only
rudimentary management capabilities like executing a specific command for each
failing sensor state. But they don’t care about implications resulting from other fail-
ures. Additionally their scalability is limited in the focus of future high performance
computing resources, i. e. current techniques visualizing the status will no longer
be adequate due to the huge amount of data. Or the tools are designed to manage
systems like Tivoli [12] which means to force to set up the machines according to
an overall configuration which is normally done regardless of the underlying state.
This is mostly done on a regular basis to force global changes down to all systems
and even install needed software if not available and so on. But changing configu-
rations in reaction to failing systems or services is not covered by them, so no real
error handling can be done.

3 TIMaCS - Solution

The project TIMaCS (Tools for Intelligent System Management of Very Large Com-
puting Systems) is initiated to solve the above mentioned issues. TIMaCS deals
with the challenges in the administrative domain upcoming due to the increasing
complexity of computing systems especially of computing resources with a per-
formance of several petaflops. The project aims at reducing the complexity of the

4 Authors Suppressed Due to Excessive Length

manual administration of computing systems by realizing a framework for intelli-
gent management of even very large computing systems based on technologies for
virtualization, knowledge-based analysis and validation of collected information,
definition of metrics and policies.

The TIMaCS framework includes open interfaces which allow easy integration
of existing or new monitoring tools, or binding to existing systems like accounting,
SLA management or user management systems. Based on predefined rules and poli-
cies, this framework will be able to automatically start predefined actions to handle
detected errors, additionally to the notification of an administrator. Beyond that the
data analysis based on collected monitoring data, regression tests and intense regular
checks aims at preventive actions prior to failures.

We seek for developing a framework ready for production and its validation at
the High Performance Computing Center Stuttgart (HLRS), the Center for Informa-
tion Services and High Performance Computing (ZIH) and the Distributed Systems
Group at the Philipps University Marburg. NEC with the European High Perfor-
mance Computing Technology Center and science + computing are the industrial
partners within the TIMaCS project. The project funded by the German Federal
Ministry of Education and Research started in January 2009 and will end in Decem-
ber 2011.

Following subsections describe the TIMaCS framework, presenting its architec-
ture and components.

3.1 High Level Architecture

The description of the TIMaCS architecture provided in this section is based on
earlier papers of the authors [13, 14]. In contrast to earlier papers, which described
TIMaCS architecture on a very high level, this paper presents the architecture more
detailed, describing each component.

The self management concept of the proposed framework follows IBM auto-
nomic computing reference architecture [9]. Self managing autonomic capabilities
in computer systems perform tasks that IT professionals choose to delegate to the
technology according to predefined policies and rules. Thereby, policies determine
the type of decisions and actions that autonomic capabilities perform [9].

The TIMaCS framework is designed as a policy based monitoring and manage-
ment framework with an open architecture and a hierarchical structure. The hierar-
chy of the TIMaCS framework is formed by management layers acting on different
levels of information abstraction. This is achieved by generating state information
for groups of different granularity: resources/node, node-group, cluster, organiza-
tion. These granularities form abstraction layers. A possible realization of the hier-
archies can be achieved in a tree-like structure, as shown in Figure 1.

The bottom layer, called resource/node layer, contains resources or compute
nodes with integrated sensors, which provide monitoring information about re-
sources or services running on them. Additionally, each managed resource has inte-

Towards Intelligent Management of Very Large Computing Systems 5

grated Delegates. These are interfaces, which allow to execute commands on man-
aged resources. Furthermore, there exist other Delegates which are not directly inte-
grated in resources (e. g. Job Scheduler), but have an indirect possibility to influence
those resources (e. g. by removing error nodes from the batch queue).

Each management layer consists of dedicated nodes, called TIMaCS nodes, with
monitoring and management capabilities organized in two logical blocks. The mon-
itoring block collects information from the nodes of the underlying layer. It ag-
gregates the information and makes conclusions by pre-analysing information, cre-
ating group states of certain granularity and triggering events, indicating possible
errors. The management block analyses triggered events applying intelligent esca-
lation strategies, and determines which of them need decisions. Decisions are made
in accordance with predefined policies and rules, which are stored in a knowledge
base filled up by system administrators when configuring the framework. Decisions
result in commands, which are submitted to Delegates and executed on managed re-
sources (compute nodes) or other components influencing managed resources, like
a job-scheduler, capable to remove defective nodes from the batch queue. The hi-
erarchic structure of the TIMaCS framework allows reacting on errors locally with
very low latency. Each decision is reported to the upper layer to inform about de-
tected error-events and selected decisions to handle the error-event. The upper layer,
which generally has more information, is now able to intervene on received reports

Data,

Heartbeat

TIMaCS Node

Compute Node

DelegateSensors

Command
Data,

Heartbeat

Compute Node

DelegateSensors

Command

...

TIMaCS NodeTIMaCS Node

Command,

Updates

Event,

Report,

Heartbeat

Event,

Report,

Heartbeat

Event,

Report,

Heartbeat

Command,

Updates
Command,

Updates

Resources

Nodes

Layer 0

Node-Group

Layer 1

Cluster

Layer 2

Organization

Layer 3

Command,

Updates

Event,

Report,

Heartbeat

Event,

Report,

Heartbeat

Admin-Node

Event,

Report,

Heartbeat

Command,

Updates
Command,

Updates

Data,

Heartbeat

Compute Node

DelegateSensors

Command

...

......

Knowledgebase

with

Policies, Rules ...

TIMaCS Node TIMaCS NodeTIMaCS Node
KB KB KB

KBKBKB

KB

Legend

KB

Fig. 1 The hierarchy of TIMaCS

6 Authors Suppressed Due to Excessive Length

by making new decisions resulting in new commands, or an update of the knowl-
edge base of the lower layer. Only escalated reports/events require the effort of an
administrator for deeper analysis.

On top of the framework an Admin-Node is settled, which allows administrators
to configure the framework, the infrastructure monitoring, to maintain the Know-
ledge Base and to execute other administrative actions. All nodes are connected by
message based communication infrastructure with fault tolerance capabilities and
mechanisms ensuring the delivery of messages following the AMQP standard.

The following subsections describe the architecture of the TIMaCS components
in detail, explaining monitoring, management and virtualisation of the system.

3.2 Monitoring

The monitoring capability of the TIMaCS node provided in the monitoring block,
consists of Data-Collector, Storage, Aggregator, Regression Tests, Compliance
Tests and the Filter & Event Generator, as shown in Figure 2.

The components within the monitoring block are connected by messaging mid-
dleware, enabling flexible publishing and consumption of data according to topics.
These components are explained in the subsequent sections.

M
e
s
s
a
g
e
 B
u
s

M
e
s
s
a
g
e
 B
u
s

K
n
o
w
le
d
g
e

B
a
s
e

c
o
m
m
a
n
d
s

u
p
d
a
te

Fig. 2 Monitoring and Management in TIMaCS

Towards Intelligent Management of Very Large Computing Systems 7

3.2.1 Data-Collector

The Data-Collector collects metric data and information about monitored infra-
structure from different sources, including compute nodes, switches, sensors or
other sources of information. The collection of monitoring data can be done syn-
chronous or asynchronous, in pull or push manner, depending on the configuration
of the component. In order to allow integration of various existing monitoring tools
(like Ganglia [4] or Nagios[11]) or other external data-sources, we use a plug-in-
based concept, which allows the design of customized plugins, capable to collect
information from any data-source, as shown in Figure 2. Collected monitoring data
consist of metric values, and are semantically annotated with additional informa-
tion, describing source location, the time, when the data were received, and other
relevant information for data processing. Finally, annotated monitoring data are pub-
lished according to topics, using AMQP based messaging middleware, ready to be
consumed and processed by other components.

3.2.2 Storage

The Storage subscribes to the topics published by the Data-Collector, and saves the
monitoring data in the local round robin database. Stored monitored data can be
retrieved by system administrators and by components analysing data history, such
as Aggregator or Regression Tests.

3.2.3 Aggregator

The Aggregator subscribes to topics produced by the Data-Collector, and aggre-
gates the monitoring data, i. e. by calculating average values, or the state of certain
granularity (services, nodes, node-groups, cluster etc.). The aggregated information
is published in new topics, to be consumed by other components of the same node
(i. e. by the Filter & Event Generator), or those of the upper layer.

3.2.4 Regression Tests

Regression Tests help cutting down on system outage periods by identifying com-
ponents with a high probability of soon failure. Replacing those parts during regular
maintenance intervals avoids system crashes and unplanned downtimes.

To get an indication, if the examined component may break in the near fu-
ture, regression tests evaluate the chronological sequence of data for abnormal be-
haviour. The algorithm, which analyses those data, we call regression analysis. Since
different metrics may need different algorithms for obtaining usable hints of the
proper functioning of a component, TIMaCS allows for different regression analy-
ses, which are implemented through an open interface.

8 Authors Suppressed Due to Excessive Length

One of the implemented regression analyses is the linear regression. There, a
linear function is fitted to the data and the slope is returned. This algorithm is espe-
cially useful for predicting the state of a hard disk and evaluating memory errors on
a DIMM.

TIMaCS distinguishes between online- and offline-regression tests. Online-re-
gression tests are performed on a regular time interval and evaluate the most recent
historical data being delivered by the publish/subscribe-system. Offline-regression
tests on the contrary are only performed on request. They query the database to
obtain their data for evaluation.

3.2.5 Compliance Tests

Compliance Tests enable early detection of software and/or hardware incompatibi-
lities. They verify, if the correct versions of firmware, hardware and software are
installed and they test, if every component is on the right place and working prop-
erly. Compliance tests are only performed on request since they are designed to run
at the end of a maintenance interval or as a preprocessor to batch jobs. They may
use the same sensors as used for monitoring but additionally they allow for starting
bench marks.

Both compliance and regression tests are an integral part of TIMaCS. Therefore,
they can easily be automated and help reducing the manual administrative costs.

3.2.6 Filter & Event Generator

The Filter & Event Generator subscribes to particular topics produced by the Data-
Collector, Aggregators, and Regression- or Compliance Tests. It evaluates received
data by comparing it with predefined values. In case that values exceed permissible
ranges, it generates an event, indicating a potential error. The event is published
according to a topic and sent to that components of the management block, which
subscribed to that topic.

The evaluation of data is done according to predefined rules, defining permissible
data ranges. These data ranges may differ depending on the location, where these
events and messages are published. Furthermore, the possible kinds of messages
and ways to treat them may vary strongly from site to site and in addition it depends
on the layer the node belongs to.

The flexibility obviously needed can only be achieved by providing the possi-
bility of explicitely formulating the rules by which all the messages are handled.
TIMaCS provides a graphical interface for this purpose, based on eclipse Graphical
Modelling Framework [15].

Towards Intelligent Management of Very Large Computing Systems 9

3.3 Management

The management block is responsible for making decisions in order to handle error
events. It consists of the following components: Event Handler, Decision Maker,
Knowledge Base, Controlled and Controller, as shown in Figure 2. Subsequent sec-
tions describe these components in detail.

3.3.1 Event Handler

The Event Handler analyses received reports and events applying escalation strate-
gies, to identify those which require error handling decisions. The analysis com-
prises methods evaluating the severity of events/reports and reducing the amount of
related events/reports to a complex event. The evaluation of severity of events/reports
is based on their frequency of occurrence and impact on health of affected granu-
larity, as service, compute node, group of nodes, cluster etc. The identification of
related events/reports is based on their spatial and temporal occurrance, predefined
event relationship patterns, or models describing the topology of the system and de-
pendencies between services, hardware and sensors. After the event has been clas-
sified as ”requiring decision”, it is handed over to the Decision Maker.

3.3.2 Decision Maker

The Decision Maker is responsible for planning and selecting error correcting ac-
tions, made in accordance with predefined policies and rules, stored in the Know-
ledge Base. The local decision is based on an integrated information view, reflected
in a state of affected granularity (compute node, node group, etc.). Using the topo-
logy of the system and dependencies between granularities and sub-granularities,
the Decision Maker identifies the most probable origin of the error. Following pre-
defined rules and policies, it selects decisions to handle identified errors. Selected
decisions are mapped by the Controller to commands, and are submitted to nodes of
the lower layer, or to Delegates of managed resources.

3.3.3 Knowledge Base

The Knowledge Base is filled up by the system administrators when configuring the
framework. It contains policies and rules as well as information about the topology
of the system and the infrastructure itself. Policies stored in the Knowledge Base are
expressed by a set of objective statements prescribing the behaviour of the system
on a high level, or by a set of (event, condition, action) rules defining actions to be
executed in case of error detection, thus prescribing the behaviour of the system on
the lower level.

10 Authors Suppressed Due to Excessive Length

3.3.4 Controller, Controlled and Delegate

The Controller component maps decisions to commands and submits these to Con-
trolled components of the lower layers, or to Delegates of the managed resources.

The Controlled component receives commands or updates from the Controller
of the management block of the upper layer and forwards these, after authentication
and authorization, to adressed components. For example, received updates contain-
ing new rules or information, are forwarded to the Knowledge Base to update it.

The Delegate provides interfaces enabling the receipt and execution of com-
mands on managed resources. It consists of Controlled and Execution components.
The Controlled component receives commands or updates from the channels to
which it is subscribed and maps these to device specific instructions, which are exe-
cuted by the Execution component. In addition to Delegates which control managed
resources directly, there are other Delegates which can influence the behaviour of
the managed resource indirectly. For example, the virtualization management com-
ponent, presented in Section 3.4, is capable to migrate VM-instances of affected or
faulty nodes to healthy nodes.

3.4 Virtualization in TIMaCS

Virtualization is an important part of the TIMaCS project, since it enables partition-
ing of HPC resources. Partitioning means that the physical resources of the system
are assigned to host and execute user-specific sets of virtual machines. Depending on
the users’ requirements, a physical machine can host one or more virtual machines
that either use dedicated CPU cores or share the CPU cores. Virtual partitioning of
HPC resources offers a number of benefits for the users as well as for the admin-
istrators. Users no longer rely on the administrators to get new software (including
dependencies such as libraries) installed, but they can install all software compo-
nents in their own virtual machine. Additional protection mechanisms including the
virtualization hypervisor itself guarantee protection of the physical resources. Ad-
ministrators benefit from the fact that virtual machines are easier to manage in cer-
tain circumstances than physical machines. One of the benefits of using TIMaCS is
to have an automated system that makes decisions based on a complex set of rules. A
prominent example is the failure of certain hardware components (e. g. fans) which
leads to an emergency shutdown of the physical machines. Prior to the actual system
shutdown, all virtual machines are live-migrated to another physical machine. This
is one of the tasks of the TIMaCS virtualization component.

The used platform virtualization technology in the TIMaCS setup is the Xen Vir-
tual Machine Monitor [16] since Xen with para-virtualization offers a reasonable
tradeoff between performance and manageability. Nevertheless, the components are
based on the popular libvirt 1 implementation and thus can be used with other hyper-

1 http://libvirt.org/

Towards Intelligent Management of Very Large Computing Systems 11

visors such as the Kernel Virtual Machine (KVM). The connection to the remaining
TIMaCS framework is handled by a Delegate that receives commands and passes
them to the actual virtualization component. A command could be the request to
start a number of virtual machines on specific physical machines or the live migra-
tion from one machine to another. If the framework relies on a response, i. e. it is
desirable to perform some commands synchronously, the Delegate responds back to
an event channel.

Resources

Virtualization Component

node node node

node node node

node node node

node node node

Management Component

User

deploy
VM

TIMaCScontrols

monitor, test, ...

Administrator

manage
VMs

Delegate

Pool of
VM Images

S
h

a
re

d
S

to
ra

ge

Fig. 3 TIMaCS Virtualization Components

Figure 3 describes the architecture of the TIMaCS virtualization components.
The image pool plays a central rule since it contains all virtual machines’ disk
images either created by the user or the local administrator. Once a command is
received via the Delegate, the virtualization component takes care of executing it.

3.5 Communication Infrastructure

To enable communication in TIMaCS, all TIMaCS nodes of the framework are con-
nected by a scalable message based communication infrastructure supporting pub-
lish/subscribe messaging pattern, with fault tolerant capabilities and mechanisms
ensuring delivery of messages, following the Advanced Message Queuing Protocol
(AMQP) [17] standard. Communication between components of the same node is
done internally, using memory based exchange channels bypassing the communica-
tion server. In a topic-based publish/subscribe system, publishers send messages or
events to a broker, identifying channels by unique URIs, consisting of topic-name

12 Authors Suppressed Due to Excessive Length

and exchange-id. Subscribers use URIs to receive only messages with particular
topics from a broker. Brokers can forward published messages to other brokers with
subscribers that are subscribed to these topics.

The format of topics used in TIMaCS consists of several sub-keys (not all sub-
keys need to be specified):

<source/target>.<kind>.<kind-specific>

• The sub-key source/target specifies the sender(group) or receiver(group) of the
message, identifying a resource, a TIMaCS node or a group of message con-
sumers/senders.

• The sub-key kind specifies the type of the message (data, event, command, report,
heartbeat, . . .), identifying a type of the topic consuming component.

• The sub-key kind-specific is specific to kind, i. e., for the kind ”data”, the kind-
specific sub-key is used to specify the metric-name.

The configuration of the TIMaCS communication infrastructure comprises setup
of the TIMaCS nodes and AMQP based messaging middleware, connecting TIMaCS
nodes according to the topology of the system. This topology is statically at the be-
gining of the system setup, but can be changed dynamically by system updates dur-
ing run time. To build up a topology of the system, a connection between TIMaCS
nodes and AMQP servers, the latter are usually colocated with TIMaCS nodes in
order to achieve scalability, must follow a certain scheme. Upstreams, consisting of
event-, heartbeat-, aggregated-metrics and report-messages, are published on mes-
saging servers of the superordinated management node, enabling faster access to re-
ceived messages. Downstreams, consisting of commands and configuration updates,
are published on messaging servers of the local management node. This ensures that
commands and updates are distributed in an efficient manner to adressed nodes or
group of nodes.

Using AMQP based publish/subscribe system, such as RabbitMQ [18], enables
TIMaCS to build up a flexible, scalable and fault tolerant monitoring and manage-
ment framework, with high interoperability and easy integration.

4 Conclusion

Challenges in the area of administration of very large computing systems have led to
the design of the TIMaCS solution, a scalable policy based monitoring and manage-
ment framework. From the system monitoring point of view, the presented TIMaCS
framework reduces the overwhelming information flow of monitoring-data by han-
dling and filtering it on different levels of abstractions. At the same time, it increases
the information value delivered to the system administrator, comprising only nec-
essary and important information. The usage of compliance- and regression tests
enables administrators to realize preventive actions, allowing to check the status of
the infrastructure preventively. The plug-in based monitoring concept enables inte-
gration of various existing monitoring tools like Ganglia, Nagios, ZenossCore and

Towards Intelligent Management of Very Large Computing Systems 13

other information sources, so providers are not forced to replace their existing mon-
itoring installation.

One big issue for system administrators, especially on HPC resources, is the ca-
pability to take actions in case of an error in a predefined way. The TIMaCS manage-
ment framework supports different automation and escalation strategies to handle
errors based on policies, including notification of an administrator, semi-automatic
to fully-automatic counteractions, prognoses, anomaly detection and their valida-
tion. Automated error handling reduces the system recovery time. The hierarchic
structure of the framework allows reacting on errors locally with very low latency,
although the full system status can be used for making a decision. In addition, the
upper layers can intervene if their more global view leads to another decision.

The virtualization concept used in TIMaCS enables administrators easy partition-
ing and dynamic user assignment of very large computing systems, allowing setup,
migration or removal of single compute nodes out of a heterogeneous or hybrid
system.

Using the AMQP based publish/subscribe system enables TIMaCS to build up
a flexible, scalable and fault tolerant monitoring and management framework, with
high interoperability and easy integration.

By installing the TIMaCS framework the administrator will be enabled to specify
rules and policies with simple access to all monitored data. So it is not necessary to
know any details about the underlying monitoring systems since the sensor infor-
mation is standardized. So defining error handlings becomes very simple and they
can also be activated in different manners from manually on demand to fully auto-
mated when the actions are well tested. Going far beyond current practice it is even
possible to define lots of different cluster configurations and set them up in different
partitions of the whole system in parallel or changing over time. So it is possible to
cut off a specific part of the cluster for urgent computing with higher storage band-
width for some time or change the scheduling according to the changing submit
behaviour from weekdays to weekends. It might even be possible with some further
developments to allow users to define which hardware characteristics they need i. e.
minimal network but high compute power may result in a restriction of the network
so that the overall network performance can be assured to other users. This may
result in more detailed payment models.

Thus TIMaCS will give the administrator a tool so that he can manage increasing
system complexity and handle current issues like errors and even be prepared to do
changes very dynamically, which currently need a very long time consuming actions
with a lot of manual overhead, so that in practice it is done only once when installing
the cluster or extending it.

Acknowledgements The results presented in this paper are partially funded by Federal Ministry
of Education and Research (BMBF) through the TIMaCS [6] project.

14 Authors Suppressed Due to Excessive Length

References

1. Strohmaier, E., Dongarra, J., J., Meuer, H., W., Simon, H., D.,: Recent trends in the market-
place of high performance computing, Parallel Computing, Volume 31, Issues 3-4, March-
April 2005, pp 261-273

2. Wong, Y., W., Mong Goh R, S, Kuo, S., Hean Low, M., Y.: A Tabu Search for the Het-
erogeneous DAG Scheduling Problem, 2009 15th International Conference on Parallel and
Distributed Systems

3. Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer, K., Kubiatowicz, J., Morgan,
N., Patterson, D., Sen, K., Wawrzynek, J., Wessel, D., Yelick, K.: A view of the parallel
computing landscape, Communications of the ACM, v.52 n.10, October 2009

4. Ganglia web-site, http://ganglia.sourceforge.net/
5. Zenoss web-site, http://www.zenoss.com
6. TIMaCS project web-site, http://www.timacs.de
7. organic-computing web-site, http://www.organic-computing.de/spp
8. Wuertz, R.P.: Organic Computing (Understanding Complex Systems), Springer 2008
9. IBM: An architectural blueprint for autonomic computing,

http://www-03.ibm.com/autonomic/pdfs/AC Blueprint White Paper V7.pdf, IBM Whitepa-
per, June 2006. Cited 16 December 2010.

10. Linux Magazin, Technical Review, Monitoring, 2007
11. Nagios web-site, http://www.nagios.org
12. IBM Tivoli web-site, http://www-01.ibm.com/software/tivoli/
13. Buchholz, J., Volk, E.: The Need for New Monitoring and Management Technologies in Large

Scale Computing Systems. In: Procedings of eChallenges 2010, to appear.
14. Buchholz, J., Volk, E. (2010): Towards an Architecture for Management of Very Large Com-

puting Systems. In: Resch, M.,Benkert, K., Wang, X., Galle, M., Bez, W., Kobayashi, H.,
Roller, S. (ed) High Performance Computing on Vector Systems 2010, Springer, Berlin Hei-
delberg.

15. eclipse Graphical Modeling Project (GMP) http://www.eclipse.org/modeling/gmp/
16. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I.,

Warfield, A.: Xen and the Art of Virtualization, in SOSP ’03: Proceedings of the 19th ACM
Symposium on Operating Systems Principles, 2003, ACM Press, Bolton Landing, NY, USA

17. Advanced Message Queuing Protocol (AMQP) web-site, http://www.amqp.org
18. RabbitMQ web-site, http://www.rabbitmq.com

