Multi-Layered Virtual Machines for Security
Updates in Grid Environments

Roland Schwarzkopf, Matthias Schmidt, Niels Fallenbeck, Bernd Freisleben

Department of Mathematics and Computer Science, University of Marburg
Hans-Meerwein-Str. 3, D-35032 Marburg, Germany
{rschwarzkopf, schmidtm, fallenbe, freisleb}@ informatik.uni-marburg.de

Abstract—The use of user specific virtual machines (VMs) in
Grid and Cloud computing reduces the administration overhead
associated with manually installing required software for every
user on every computational resource. However, a large number
of user specific VMs increases the risk of security attacks.
In particular, Cloud computing providers like Amazon suffer
from these problems, since they offer different operating systems
within VMs and delegate the security update problem for VMs
to the users. In this paper, a solution that solves the problem by
separating a VM into several layers is presented. The approach
creates the possibility of installing security updates into a base
layer centrally, affecting all VMs without affecting the users’
own installed software stack by merging package databases. The
proposal permits resource providers to keep a large number of
VMs patched with the latest security fixes without bothering
the users. Furthermore, the proposal avoids the overhead for
transferring possible large VM images over the network between
the nodes of a Grid or Cloud by allowing to hold locally cached
VM images with a basic operating system installation while only
the user-specific software stack stored in a separate layer needs
to be transferred.

I. INTRODUCTION

Different users of a Grid or Cloud require different types of
software installed on the computational resources to be able
to execute their jobs. This is a challenge to the administrators
of the participating sites, since every requested piece of
software has to be installed and tested manually on all involved
sites. Under certain circumstances, installation of individual
software might not be possible at all, because conflicts with
already installed software exist.

To solve this problem, the Xen Grid Engine (XGE) has
been developed [1]. It uses user-specific Xen virtual machines
(VMs) to provide a secure execution environment for jobs in
a Grid. This is achieved by extending the Sun Grid Engine
(SGE) [?], a cluster scheduler that is used as a backend by the
Grid middleware. To simplify the process of creating a custom
VM, the Image Creation Station (ICS) has been developed [1].
Using either a web interface or a service-oriented interface, a
user can create a VM containing a base installation of a Linux
operating system within a few minutes. After the creation, the
user can remotely log in to the machine and install arbitrary
software. When a job is scheduled to specific worker nodes in
a computational cluster, the XGE distributes the corresponding
VM image to the worker nodes, boots the VM and executes
the job in this VM. Inside the VM, the user can access his

or her home directory, mounted via the Network File System
(NFS).

The use of NFS as the VM storage may also be an alterna-
tive to the VM image distribution method used by the XGE,
especially at individual sites that provide high-performance
Storage Area Networks (SAN) or equivalent technologies.
However, for a large Grid with geographically distributed sites,
NFS is not suitable. Usually, the inter-site connections provide
less bandwidth than local connections, their usage is more
expensive, and finally there might be security issues due to the
unencrypted nature of NFS. Thus, Virtual Private Networks
(VPNs) have to be used, causing a further degradation of
performance. While this is unavoidable for the home directo-
ries, especially when files in the home directory are used for
synchronization of compute jobs in VMs at different sites, NFS
should not be used for hosting the VM images. Furthermore,
network file systems are problematic if additional compute
resources outside the computation center of an individual
site (e.g. a pool of desktop computers) are included in the
computation, because of firewalls or connections with smaller
bandwidth. Finally, once transferred to a node, VM images can
be cached locally, so they can be reused if a corresponding job
is scheduled to this node again.

The remaining issues with the distribution of the VM images
are bandwidth and transfer volume. While this is of less
importance inside a data center or even between a data center
and a desktop Grid within a single company, it becomes
cumbersome when many images must be transfered between
different computing centers.

The ICS provides a simple interface to VM creation, allow-
ing even non-administrators to create VMs for their custom
needs. These users typically do not have in-depth experience
with system administration, especially with respect to security
updates. It can be argued that security updates are not abso-
lutely necessary for the worker nodes at Grid sites, because
they are usually part of a cluster that is almost completely
sealed from the outside by firewalls. However, sometimes
security updates are published that have to be installed even
in this scenario, e.g. the OpenSSH bug update for Debian
GNU/Linux [2]. This bug reduces the possible number of
generated SSH keys to 65535, allowing an attacker to gain root
access usually in less than 20 minutes using precalculated keys
[3]. Using the powerful machines at a Grid site may reduce

the time even further, allowing attacks between the nodes of
that Grid site.

A large number of users together with the possibility of
having more than one VM per user increases the probability
that some of the VMs will not be updated by their owners.
This is not only a risk for those machines, but also for other
VMs running. A single compromised VM can be used to attack
other components at the same Grid site. This scenario not only
affects a virtualized Grid installation, it also becomes a major
concern of Cloud computing providers. Cloud computing uses
virtualization technology to offer a non-shared use of computer
resources with publicly accessible worker nodes on demand.
For example, Amazon EC2 [?] offers VMs from their own
organization, meaning that the majority of users operate on
the same basic installation.

The solution proposed in this paper (1) improves the transfer
of VM images at single Grid sites and between multiple Grid
sites, and (2) provides administrators the option to centrally
update a large number of VMs in case vital security updates
are published. The basic idea of the approach is to separate the
common and user specific parts of the VM images into distinct
layers. Each of these layers hosts a complete filesystem,
containing the base installation (base layer) or the software
installed by the user (user layer), respectively. Using Copy-on-
write (COW) filesystems like UnionFS [4], these layers can be
merged into a single, virtual file system with the contents of
both layers. Since the base layer is common to all VM images,
it only needs to be transferred once to individual nodes or
remote Grid sites, saving network resources. Only the (usually
smaller) user layer needs to be transferred after a new VM is
created or an existing VM is changed.

The separation of base installation and VM specific software
allows an administrator to apply security updates to the base
installation. This is a one-time task that automatically affects
all VMs build upon this base installation. Obviously, this is not
a strategy suitable for everyday updates, since the modification
of the base installation without knowledge of the software
installed on top of it may break dependencies, create conflicts
and corrupt the software installed by the user. But in the
case of well selected, necessary security updates as the one
mentioned above that do not modify the functionality of the
base installation except repairing the flaw, this is a feasible
approach. After applying such an update, the package database
of the VM is inconsistent, because only the database of the
base installation is updated, which might not be visible in
the VM images based on top of it, because of the UnionFS
semantics. Thus, the databases of all VMs have to be merged
with the one in the corresponding base installation.

The paper is organized as follows. Section II presents the
proposed design. The implementation is discussed in Section
III. Experimental results are presented in Section IV. In
Section V, related work is discussed. Section VI concludes
the paper and outlines areas for future research.

user layer

VM P VM | A—
user layer : vendor layer vendor layer
N
base layer base layer base layer
o
(a) (b) (©
Fig. 1. Usage scenarios for a layered VM

II. DESIGN

In this section, the design of our proposed solution for
the stated problems using a multi-layered root filesystem
(MLRFS) in a VM and the process of updating individual
layers, including potential problems and usage guidelines, are
presented.

A. Multi-layered Root Filesystem

A layered filesystem is a virtual filesystem built from more
than one individual filesystem (layer) using a COW solution
like UnionFS. The term multi-layered expresses the possibility
to include three or more layers into that filesystem in a flexible
way, to be usable in different scenarios. Finally, the term root
filesystem expresses the use of the virtual filesystem itself as
a root filesystem, in contrast to applying layers to individual
folders.

There are different usage scenarios for layered VM images,
as shown in Figure 1. The user may set up the user specific
part of a VM completely on his or her own, leading to a two-
layered image (a). Alternatively, a software vendor (or one of
its sales partners) may provide a layer containing one of its
products (b). Even in this case, the user may set up a custom
layer on top of the vendor layer, containing extensions or other
required tools (c). Nevertheless, other usage scenarios might
be possible and should be supported.

Usually, a large number of similar jobs are submitted to
a Grid, where each job represents a part of the problem
to be solved. A simulation process is typically divided into
numerous independent tasks that will be concurrently executed
on many compute nodes. These jobs are executed in multiple
instances of the VM, and depending on the scheduler used,
they are most likely executed consecutively. Retransmitting
the user layer again every time is contradicting to the whole
idea of image distribution compared to the use of NFS. Thus,
the user layer (as well as the base and possible vendor layers)
should be cached locally on the individual nodes. To ensure
that a cached layer is in a working state when it is used to form
a root filesystem, it is best to make sure that it is not changed
with respect to its original state. This can only be achieved by
prohibiting write access to the layer during runtime.

1) Building the MLRFS: Considering the boot process of
Linux, the MLRFS must be built before the init process is
executed to start the system. This allows the user to make
arbitrary changes to its VM, including changes to the service

configuration or even the init process itself. Thus, building the
root filesystem has to be done from inside the initial ramdisk,
a minimal root filesystem that is responsible for mounting
the real root filesystem. Inside the initial ramdisk, arbitrary
scripts can be executed, as long as they are compatible with
the restricted command set and shell.

The script must provide the following capabilities:

(1) Creating a root filesystem of an arbitrary number of
layers

(2) Creating ramdisks to be used as layers

(3) Injecting files into the root filesystem

(4) Executing scripts (inside layers) before executing init

(1) ensures the flexibility needed to be usable in the different
usage scenarios of layered VMs defined above. The use of
ramdisks (2) is a possible solution to the use of read-only
layers, which is explained in detail below. (3) provides a
simple way to install site-specific configuration files into the
root filesystem. In combination with (2), the files can be put
in a dynamically created layer, together will all files that
are changed during runtime of the VM, if the actual layers
are mounted read-only. If configuration files do not provide
enough possibilities to prepare a VM for execution at a specific
Grid site, (4) allows the site administrator to execute arbitrary
scripts inside the VM before the init process is executed. This
is necessary to change existing files instead of completely
overwriting them. For example, fixing the Debian OpenSSH
bug requires to exchange all keys created with the unpatched
version. This includes exchanging the public key of the ICS,
installed in the authorized_keys file of the root account
during VM creation that needs to be replaced without touching
other public keys probably installed by the user.

2) Read-only Layer Access: To ensure reusability of layers
cached at individual nodes, write access to these layers has to
be prohibited during usage. Nevertheless, a running system
needs write-access to the root filesystem. Thus, a single
writeable layer must be part of the MLRFS. This can either
be a ramdisk or a temporary layer stored locally on the node.
The former approach is not suitable for Grid computing,
where the users applications likely consume much memory
for their applications. Obviously, the latter approach also has
a drawback: an empty layer has to be created before the VM
can be booted.

All files not residing in the user’s home directory will be lost
after the machine is shut down. To allow the user to analyze
errors or check the execution of his or her jobs, the log files
have to be saved to a persistent storage area during the machine
is shutting down. This also applies to the use of temporary
layers instead of ramdisks, because they are kept only during
runtime and will eventually be reused for other VMs, after
having been completely overwritten and reinitialized with a
blank filesystem. This security precaution to prevent malicious
users from trying to restore data from a temporary layer, is
done in the background. Multiple temporary layers exist that
are used successively to avoid idle time while the layer is
cleared.

A-1.0 A-1.0 A1

user layer A-1.0 B.2.0 B.2.0 B20

base layer A-1.0 A-1.0 A-1.1 A-1.1

(a) (b) (© (d)

Fig. 2. Package databases in a dual-layered VM. A and B are packages with
their version numbers.

3) Update Layers and Merging: When a layer is updated,
it has to be transfered to all remote Grid sites using it. This
involves marking all copies of that layer inside the caches of
nodes as invalid, forcing the nodes to fetch the layer again.
While the latter is usually a fast process, because the connec-
tion between the nodes and the layer storage of that the site
normally has a high bandwidth, the former implies transferring
layers over wide area networks with lower bandwidth.

Instead of directly updating a layer, the layer can be
mounted read-only inside a MLRFS, together with a writable
update layer on top. All changes occurring during the update
are then stored inside the update layer, which is much smaller
than the complete updated layer, because it only contains the
changed files. Transferring the update layer to remote sites is
thus a much faster process. At the remote site, the layer is
updated using the contents of the update layer.

B. Updating Virtual Machines

The MLRFS allows efficient updating of VMs, because the
update only needs to be applied to a shared base layer cen-
trally. Thereby all VMs based on that layer are automatically
updated. As stated above, updating without knowledge of all
installed software is problematic. Thus, (1) adequate care is
required when updating a base layer and (2) VMs using the
updated layer should be checked for compatibility, i.e. the
absence of broken dependencies and conflicts.

Even when the update is compatible, the package database
of the VM is very likely inconsistent. Figure 2 illustrates this
problem. When the user installs software in his or her layer
(b), UnionFS copies the package database from the base layer
into the user layer before any changes are made to it. Thus,
any changes in the package database of the base layer are not
visible anymore (c). Merging the databases tends to provide a
consistent package database in the user layer again (d).

A consistent package database is only needed when the VM
is booted by the user on the ICS for maintenance reasons, i.e.
for adding or updating software. On the other hand, when
the machine is booted to execute a job, inconsistencies in
the package database are irrelevant, because already installed
software is used, but new software is not installed. In that case,
a compatibility check is sufficient, whereas in the former case
additional merging of the package database is required.

The merging of the package database is presented first,
because the compatibility check can only be done on a
consistent package database.

1) Merging the Package Database: In the merge process,
the package databases of the old and the updated base layer
are compared entry by entry to find updated, added or removed
packages. The correct package database entry for each of those
packages can be determined according to the corresponding
flow chart. For every unmodified package, the entry in the
user layer is kept. The remaining parts of the flow charts check
whether the update can be applied successfully. For example,
updated files may not be visible, even when the update is
compatible in the sense stated above. This can either be caused
by other versions of the files existing in the user layer, or
because of so called whiteouts, the method used in UnionFS
to delete files from lower, read-only layers.

Figure 3(a) shows the flow chart for packages updated in the
base layer. The first step is the comparison whether the entry
in the user layer package database is modified compared to
the one in the old base layer. If the entries are equal, the files
of that package likely exist only in the base layer and thus are
visible. Unfortunately, there is a rare case in which the files
of the package might exist in the user layer as well, even if
the package database entries are equal: The user might have
uninstalled the package and installed it again using the same
version. The existence of the files from that package in the
user layer has to be checked, because they would hide the
updated ones. If the files exist in the user layer, the success
of the update depends on the version comparison (see below).
Otherwise, the update succeeded, if it is compatible. Anyway,
the package database entry from the updated base layer is the
correct one.

In case of a modified entry, the package has been either
updated/downgraded or removed. In both cases, the updated
files in the base layer are hidden, either by the ones in the user
layer or by the corresponding whiteouts. The package database
entry from the user layer is the correct one in both cases. In
case the package was removed, the update is considered as
failed and the chance of an incompatibility is high. Otherwise,
the version comparison needs to be done.

In case the package is installed in both updated base and
user layers, the package versions need to be compared. If the
version in the base layer is less or equal, the update obviously
succeeded, although it may be incompatible in the former case.
On the other hand, if the version in the base layer is greater,
the update is considered as failed and possibly is incompatible.

Figure 3(b) shows the flow chart for packages added in the
base layer. It has to be checked if a corresponding entry exists
in the user layer package database. If such an entry does not
exist, the package was successfully added, although it may still
be incompatible. The package database entry from the updated
base layer is the correct one.

In case such an entry exists, the added package is either
already installed in the user layer or has been installed and was
removed. In the former case, the files added in the base layer
are hidden by the ones in the user layer. Thus, the package
database entry from the user layer is the correct one and the
version comparison described above needs to be done. In the
latter case, the files added to the base layer are visible. Thus,

the package database entry from the updated base layer is the
correct one and the package was successfully added, but may
again be incompatible.

Figure 3(c) shows the flow chart for packages removed in
the base layer. The first step is the comparison whether the
entry in the user layer package database is modified compared
to the one in the old base layer. If the entries are equal, the
package was likely installed only in the base layer and thus can
be removed. Except for possible incompatibilities, the removal
succeeded and the base layer entry is correct. As for updated
packages, it is possible that files of the package might exist
in the user layer as well. In that case, the package would still
be available. Thus, the removal failed, the user layer entry is
correct and the update is possibly incompatible.

In case of a modified entry, the package has been either
updated/downgraded or removed. The package database entry
from the updated base layer is the correct one in both cases.
If the package was removed, the removal in the base layer
succeeded. Otherwise the removal is considered as failed and
the probability of incompatibility is high.

2) Checking Compatibility: With a consistent package
database, the compatibility check is a simple task. For each
updated or added package, it must be checked that all depen-
dencies are satisfied and conflicting packages are not installed.
This is very likely the case, because these issues are already
addressed during the update of the base layer. Nevertheless,
the user might, for example, have removed a required package
in the usage layer. Additionally, for updated packages it must
be checked that none of the other packages conflicts with the
specific version and that no other package depends exactly
on the older version. Both cases are very rare, because the
most conflicts with version constraints emerge with versions
older than a specific version and the most dependencies
require a version equal or newer than a specific version. If
those constraints were satisfied for the old version, they are
very likely also satisfied for the updated version. For added
packages it must be checked that no other package conflicts
with this package. For removed packages, it must be checked
that no other package depends on the removed package. The
latter two kinds of problems are more likely than the ones
with updated packages.

III. IMPLEMENTATION

In this section, the implementation of the layered VMs and
the proposed update mechanism that allows installation of
security updates without endangering the integrity of the users
personal software stack as well as the integrity of the base VM
are presented.

A. Multi-layered Root Filesystem

Creating a root filesystem with an arbitrary number of
layers. Using boot parameters, a comma-separated list of
devices and another single device can be set as read-only and
writeable layers, respectively.

The devices are mounted in the specified order at mount-
points created inside the initial ramdisk that serves as the root

package added

in base layer

package updated

o

use base layer

entry
package entry modified
(old base = user)?

yes -

entry

package installed
in user layer?

k3 o i v
@ @ @ o

(b) Chart for added packages

(a) Chart for updated packages

Fig. 3.

filesystem until a chroot into the real root filesystem is done
and the real init process is started. Thereafter, the MLRFS
is built from all the layers using UnionFS and mounted at a
specific mountpoint. Later on, the init process of the initial
ramdisk does the chroot into the MLREFS.

The final steps are minimal, distribution dependent changes.
If a / entry exists in /etc/fstab, it must be removed.
During the normal startup, the root is mounted read-only first,
checked for errors and remounted as writeable. This causes
an error with the MLRFS, because it is already mounted as
writeable. Additionally, the init script that executes the check
of the root filesystem needs to be disabled.

Creating ramdisks to be used as layers. Using a special
keyword instead of a device for the writeable layer or omitting
the parameter completely uses a ramdisk as the writeable
layer. Another parameter can be used to specify the size
of the ramdisk. The ramdisk is implemented as tmpfs, the
recommended ramdisk implementation of Linux, because it
is very memory efficient.

Again, a distribution dependent change is necessary. When
the system is shut down, at some point the swap is turned
off. If the contents of the ramdisk require more memory than
is available without swap, this will result in a kernel panic.
Normally, all ramdisks are unmounted before the swap is
turned off, but this obviously must fail for a ramdisk used as
part of the MLRFS. Thus, a special init script that cleans up
the ramdisk is created and added to the shutdown procedure.

Injecting files into the root filesystem. Using a parameter, a
source can be specified that contains files to be inserted into
the writeable layer of the MLRFS. Possible sources are devices
and archives on a TFTP server. All files residing on the device
or in the archive that is fetched after the first ethernet device is
configured using DHCP are copied to the root of the writeable
layer.

Executing scripts (inside layers) before executing init. Using
a parameter, the layers desired to be searched for pre-init
scripts can be specified, using their device name. The layers
are scanned in the order they are specified, searching for scripts

package entry exists
in user layer?

[ves -
!

use user layer

package removed

yes m

package installed
in user layer?

use base layer
entry

I{} S ‘F

O

(c) Chart for removed packages

Flow charts of the package database merging process

inside a special folder. Using a mechanism similar to System
V init, the order of execution of the scripts is defined.
Implementation issues. When the chroot is done, the mount-
points of the indiviual layers are not visible anymore prevent-
ing access to the contents of individual layers. Unfortunatelly,
this causes a problem during the shutdown. The individual
layers cannot be unmounted, so they are remounted read-
only, which obviously affects only the writeable layer. But
when the mountpoints are not visible, remounting the writeable
layer fails. Thus, the writeable layer is not cleanly unmounted,
which may cause problems and requires a filesystem check to
be done. To solve this, the mountpoints are moved inside the
MLREFS, accepting that the individual layers are accessible.

B. Updating Virtual Machines

The implementation of the merging and compatibility
checking has been written in Python, based on the Debian
Package Manager dpkg, which is also used by other dis-
tributions based on Debian. The package database used by
dpkg consists of several parts located in /var/lib/dpkg,
of which only three are considered for merging.

The status file is the main part of the database. It
contains package information (e.g. name, version, dependen-
cies, etc.) and its installation status. The the info directory
contains file lists, checksums, lists of configuration files and
installation/removal scripts for every package. Finally, the
diversions file contains records about files from one
package that have been replaced by files from another package.
This allows to keep the changed files when the original
package is updated.

The description of the merge process in the last section
applies to the status file. The different records of each
package are stored in terms of key-value assignments, one
record per line. A blank line is used to separate two packages.
For easy access to this file, a package has been written that
simplifies the processing of this database. Classes exist for the
package database as whole, providing a dictionary interface for
easy package lookup, for individual packages, allowing easy

checking of their state and accessing individual records, and
even for individual records of a package, like dependencies
or conflicts. The latter provide specialized functionality to
simplify tasks like dependency checking or searching for
conflicts.

Using the flow charts of the last section, the actual merging
process is done using the classes described above. While the
base and user layer package databases are located in the
corresponding layers, a copy of the package database from
the old base layer has to be used, because the layer does not
exist anymore. Efficient checking for compatibility is more
difficult. The easiest way is to do a full constraint check,
i.e. check every package for unsatisfied dependencies and
emerging conflicts. This can be a time consuming task for
large package databases, especially because the comparison
of versions is done using dpkg. The overhead of calling an
external binary is accepted here to make sure the different
version schemes used, even within a single distribution, are
handled correctly. The full check also causes some problems,
because the package database may contain some quirks like
packages conflicting with themselves even in a plain base
installation. Additionally, the user may, for example, force the
installation of a package, even if this introduces a conflict.
This would lead to an error message during the compatibility
check although it might work. The efficient way described in
the design section uses knowledge about the changes in the
package database to reduce the number of expensive checks.
Because it only does checks related to changes, it is usually
able to handle even those problematic cases.

The info directory contains different files for each package
that store the different types of information. This part of
the package database must not be merged, because it always
represents the actual packages visible to the system. Because
of the UnionFS semantics, an older package installed in the
user layer may hide a newer package in the base layer. In this
case, the information in the info directory is correct, but the
update in the base layer can not be applied. This is an error
condition reported by the merging process.

Finally, the diversions file contains information about
files replaced by different packages. For each replaced file,
it stores the name of the package that replaced the file, the
original name and the name of the backup file. While the
replacement of files from another package is rare during a
normal update, it might occur when new packages need to be
installed within the scope of an update. The merging process
is again driven by the semantics of UnionFS: Whenever
conflicting records exist in the base and user layer versions
of the diversions file, the records from the user layer are
adopted.

IV. EXPERIMENTAL RESULTS

Adding COW-layers to VMs using UnionFS produces ad-
ditional costs when performing I/O intensive tasks. We con-
ducted a measurement to investigate this overhead. The used
VMs have 128 MB RAM and a single assigned CPU core. The
bonnie++ [?] benchmark is a well-known testing suite aimed

to perform a number of filesystem related tests. It performs a
series of tests on a file. For each test, it reports the number of
kilobytes processed per elapsed second. We performed several
tests: (1) the file is written block by block, (2) the file is
written character by character and (3) the file is rewritten,
requiring a read-, seek- and write-operation. Since no space
allocation is done, and the I/O is well-localized, this should
test the effectiveness of the filesystem cache and the speed
of data transfer. A total of 100 tests were performed and the
average of the results are shown in Figure 4. When writing
the file block by block, the non-layered VM outperformed
the layered VM (206277 KB/s vs. 198015 KB/s), thus the
COW-layer introduces a slight performance reduction. The
character test does not reveal any notable difference (48775
KB/s vs. 48319 KB/s), whereas in the rewrite test the layered
VM had a significant higher throughput than the non-layered
VM (67951 KB/s vs. 33472 KB/s). This is due to the COW-
cache of the UnionFS file system. As a conclusion it can be
stated that the introduction of the additional layers consumes
some performance if files are written in large blocks. Once this
step is performed, the performance benefits from the effective
caching of the layered filesystem are evident. Due to the fact
that most files of a regular job are written in the user’s home
directory that is natively accessible, the overhead only comes
into play in certain, special circumstances.

225000

168750

KB/s

112500

56250

Rewrite
Layered VM

Block write Char. write

Il Non-layered VM

Fig. 4. Results of the bonnie++ benchmark with layered and unlayered VMs

Comparisons to similiar solutions have not been done for
different reasons. Since the ability to update the base layer
is an important feature of our proposed solution, only the
solutions in [10], [11], [12] are comparable. Unfortunately, the
former two solutions are not available for download, while the
latter also uses UnionFS to create a layered filesystem, so the
performance is expected to be identical.

Furthermore, we applied our solution to a real-world sce-
nario. A user creates a VM and installs the package (s)he
requires to run her or his jobs. If a job is executed, this
VM needs to be transferred either to compute nodes of the
Grid site where the VM was created or to a remote Grid site.
Afterwards, a security update is applied to the VM, making it
necessary to retransfer the VM.

Without the MLRFS, every time the user updates his or
her VM and submits a job, the complete disk image of this
machine has to be copied to the particular nodes (because
a VM that was cached earlier is marked as invalid after the
software update). When the MLRFS is used, only the user

layer needs to be copied, which is significantly smaller. The
base layer needs to be copied only once, because it is cached
locally at the compute nodes. In case of an update, only the
changes are copied and merged into the corresponding layer.

We conducted a measurement of the transfer time in both
cases, comparing the VM with and without the MLRFS.
The base installation consists of 162 packages using about
468 MB, and the user installs 14 additional packages using
about 58 MB. The update includes 3 updated and 1 added
package, using about 12 MB plus about 40 MB Debian
Package Manager metadata (package lists, etc). Both VMs use
a 4 GB sparse disk image containing an ext3 filesystem. The
difference between the used space within the images and the
sizes is caused by filesystem structures and the space allocated
for files that have been deleted afterwards. Additionally, we
measured the time needed to copy the changes of the update
into the layer and to merge the package database including a
compatibility check.

Since sparse files are used for the disk images, only the used
parts of the image need to be transferred. For the transfer
operation, tar is used over a SSH-encrypted data channel,
because tar is able to handle sparse files efficiently and
supports compression that speeds up the copy operation on
slow networks. Using scp is not possible, because it does not
support sparse files and would thus copy the complete files
including unused parts.

Transfer times

Size (MB) single site multi site
uncompressed gzipped
disk image 691 | 40.59 secs 660.83 secs 460.12 secs
base layer (BL) 666 | 39.12 secs 636.92 secs 443.47 secs
BL update 72 | 15.06 secs 106.23 secs 100.11 secs
user layer 67 | 14.45 secs 101.51 secs 91.58 secs
TABLE I
TRANSFER TIMES OF VIRTUAL MACHINE DISK IMAGES AND FILESYSTEM
LAYERS

Table I shows the measured time needed to transfer dif-
ferent images from one compute node to another without
compressing the data during the copy process. We conducted
60 transfer operations to calculate a robust mean value. The
used compute nodes are dual AMD Opteron nodes with 16
GB RAM each, interconnected with a GBit switched ethernet
network. When VM images must be copied between Grid sites,
the time needed for the copy operations increases dramatically.
The table also shows the measurements of uncompressed
and gzip-compressed data transfer between compute nodes on
two different academic locations connected by the German
Research Network (DFN).

Applying the update to the base layer took 4.05 seconds,
merging the package database took 0.36 seconds. To check
the scalability of the merge algorithm, we conducted a second
measurement using a user layer containing 1231 packages
instead of 176. The time needed to merge the package database
grew to 1.01 seconds. All values are the means of 60 mea-
surements.

Summing up, without the MLRFS the amount of data to
be transferred for the VM including the update is about 1380
MB, taking about 81, 1330 or 925 secs (LAN, WAN, WAN
compressed). Using our solution, the amount of data reduces
to 140 MB, taking about 34, 212 or 196 secs when the base
image is already cached or 805 MB and 73, 850 or 640 secs
otherwise, although the latter case should be rare. This means
that the use of the MLRFS saves up to 90% traffic and 60%
— 85% time in the scenario.

V. RELATED WORK

There are several papers addressing storage virtualization to
handle the problem of storing a large number of VM images
efficiently. Typically, the use of snapshots (persistent views of
a VM image at specific points in time) as the base for the
creation of new VMs is proposed. VirtuaLinux [5] uses the
Enterprise Volume Management System (EVMS) [6] as its
storage. If a snapshot used as base of some VM images needs
to be updated, all VM images based on it need to be recreated,
making this approach unusable for centrally applied security
updates. Additionally, to the best of our knowledge, EVMS
provides no easy way to extract the differences between a
snapshot and the current state of a VM image, thus an efficient
transfer of VM images is not possible.

Parallax [7], [8] uses a custom mechanism for storing VM
images and creating snapshots. Template images are used
to build new VM images that share common blocks. The
paper gives no details about the transfer of individual images,
because the authors propose the use of a central SAN as
storage. Updating the templates is not intended by the authors,
although the block-oriented nature of their storage solution
probably leads to the same problems as with VirtuaLinux.

To reach the goal of fast migration of VMs, Sapuntzakis et
al. [9] propose a similar concept. VM images are built from
a hierarchy of disks that are combined using block-oriented
COW techniques at runtime. Transfer of individual disks is
obviously possible, because it is a requirement for migration.
Updating individual disks from the hierarchy is intended, but
requires recreation of all disks based thereon. Again, this
technique is not usable for centrally applied security updates.

A completely different approach is used in Ventana [10].
Instead of VM images as a virtual counterpart to physical
discs, views of a virtual filesystem are used. A view is a
combination of one or more branches that are trees of files and
directories. Additionally, Ventana provides a version history
for each file as well as Access Control Lists (ACLs) at the
file or branch level. A component outside the VM called Host
Manager is used to provide the view as NFS share, while the
actual data is stored on external metadata and object servers
and accessed using a specialized protocol. This solution allows
the reuse of common parts of a VM image, but relies on fast
networks to be usable. Applying security updates to the VMs
is not addressed in the paper.

XenoServer [11] uses NFS to access the root filesystem in
the VM, which is provided by another VM called Stacking
COW server running at the same host. The filesystem consists

of a local template and one or more VM specific layers called
overlays. These overlays are stored remotely and accessed
via the Andrew File System (AFS). No details are given on
how the actual filesystem is built, nor on the overlays itself
(filesystem images shared via AFS or AFS shares). While
the idea is generally comparable to that of the MLRFS, the
additional VM needed to provide the filesystem over NFS
causes a performance degradation, because every I/O operation
not only involves a context switch to the Virtual Machine
Monitor (VMM), but also to another VM that may in turn
start a new I/O operation to get the data via AFS. The authors
mention another mode of operation of XenoServer, where
no Stacking COW server is required, but the filesystem is
built inside the VM. Unfortunately, no details are given about
this approach, except that the overlay is fetched from some
network server. Again, updating VMs is not addressed at all.

A proposal for VMs for distributed workstations that can
be used as Condor nodes or virtual cluster has been made by
Wolinski et al. [12]. Besides features like automatic network
configuration, IP over P2P, etc. the paper also introduces a
layered filesystem based on UnionFS. While there are some
similarities to the MLREFS, their solution lacks some of the
features required in our scenario, as described in Section II:
(1) the flexibility to use an arbitrary number of layers — their
solution seems to be restricted to three layers, (2) the use
of ramdisks to keep the actual layers read only, (3) injecting
(configuration) files into the root filesystem, (4) executing
scripts before the actual init process starts. While the authors
mention the necessity of security updates, they do not address
the topic except stating that a layer can be exchanged without
data-loss in upper layers. They do not mention the possible
problems resulting from the exchange of a layer, as described
in Section I.

VI. CONCLUSIONS

In this paper, we have proposed a separation of VMs into
a common part containing a base installation (base layer) and
a VM specific part (user layer) that may be further divided
into various layers. This separation allows an administrator
to centrally apply security updates to the base layer that
affect all VMs build upon this base layer. The inconsistencies
inside the package database that arise from an updated base
layer have been identified, and an algorithm that fixes those
inconsistencies by merging the changes in the base layer into
the package database has been presented.

Furthermore, the proposed solution solves an important
problem in using VMs in Grid computing. However, the
transfer of huge VM images between different Grid sites is
cumbersome and may influence other computations running
concurrently. Our approach only requires a one-time distri-
bution of a potentially huge base layer. To use a new VM
in the Grid, only a much smaller user layer needs to be
distributed. This reduces the network load of VM distribution
and shortens the time between creation and use of a VM.
Efficient distribution of updates — again only the changes need
to be transferred — amplifies this advantage.

There are several areas for future research: (1) As Amazon’s
EC2 spreads further, installation of security updates in every
single VM will become cumbersome. By using the MLRFS,
a central application of security updates is possible, providing
a surplus value to customers. Currently, the MLRFS can not
be used with Amazon EC2, because the creation of custom
initial ramdisks is restricted to Amazon EC2 and selected
vendors [13]. (2) UnionFS is known to have some performance
problems with read-only branches, which is especially bad
due to the wide use of read-only layers with the MLRFSs.
These problems are solved by aufs (Another UnionFS), thus
a performance comparison between both filesystems is nec-
essary. (3) Besides the Debian Package Manager, the RPM
Package Manager is widely used. The possibility of migrating
the proposed solution to this package manager should be
evaluated.

REFERENCES

[1] M. Smith, M. Schmidt, N. Fallenbeck, T. Doernemann, C. Schridde,
and B. Freisleben, “Secure On-demand Grid Computing,” in Journal of
Future Generation Computer Systems. Elsevier, 2008.

[2] “Debian Security Advisory 1576-1 OpenSSH - Predictable Ran-
dom Number Generator,” http://www.debian.org/security/2008/dsa-
1576, May 2008.

[3] “Debian OpenSSL Predictable PRNG Bruteforce SSH Exploit,”
http://www.milwOrm.com/exploits/5622, May 2008.

[4] D. P. Quigley, J. Sipek, C. P. Wright, and E. Zadok, “UnionFS: User-
and Community-oriented Development of a Unification Filesystem,” in
Proceedings of the 2006 Linux Symposium, vol. 2, Ottawa, Canada, July
2006, pp. 349-362.

[5] M. Aldinucci, M. Torquati, M. Vanneschi, and P. Zuccato, “The
virtualinux storage abstraction layer for efficient virtual clustering,”
in PDP. IEEE Computer Society, 2008, pp. 619-627. [Online].
Available: http://doi.ieeecomputersociety.org/10.1109/PDP.2008.86

[6] “Enterprise Volume Management System,” http://evms.sourceforge.net/.

[71 A. Warfield, R. Ross, K. Fraser, C. Limpach, and S. Hand, “Parallax:
Managing storage for a million machines,” Tenth Workshop on Hot
Topics in Operating Systems (HotOS X), 2005.

[8] D. T. Meyer, G. Aggarwal, B. Cully, G. Lefebvre, M. J. Feeley,
N. C. Hutchinson, and A. Warfield, “Parallax: virtual disks for
virtual machines,” in EuroSys, ser. Proceedings of the 2008 EuroSys
Conference, Glasgow, Scotland, UK, April 1-4, 2008, J. S. Sventek
and S. Hand, Eds. ACM, 2008, pp. 41-54. [Online]. Available:
http://doi.acm.org/10.1145/1352592.1352598

[91 C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam,

and M. Rosenblum, “Optimizing the migration of virtual computers,”

SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 377-390, 2002.

B. Pfaff, T. Garfinkel, and M. Rosenblum, ‘“Virtualization aware

file systems: Getting beyond the limitations of virtual disks,” in

NSDI. USENIX, 2006. [Online]. Available: http://www.usenix.org/

events/nsdi06/tech/pfaft.html

E. Kotsovinos, T. Moreton, I. Pratt, R. Ross, K. Fraser, S. Hand, and

T. Harris, “Global-scale service deployment in the xenoserver platform,”

in Ist Works. on Real, Large Distrib. Sys., WORLDS 04. San Francisco,

CA, 2004.

D. I. Wolinsky, A. Agrawal, P. O. Boykin, J. R. Davis, A. Ganguly,

V. Paramygin, Y. P. Sheng, and R. J. Figueiredo, “On the design

of virtual machine sandboxes for distributed computing in wide-area

overlays of virtual workstations,” in VIDC ’06: Proceedings of the
2nd International Workshop on Virtualization Technology in Distributed

[10]

(11]

[12]

Computing. Washington, DC, USA: IEEE Computer Society, 2006,
p- 8.
[13] “Feature Guide: Amazon EC2 User Selectable Kernels,”

http://developer.amazonwebservices.com/connect/
entry.jspa?externallD=1345.

